A Feasible BFGS Interior Point Algorithm for Solving Convex Minimization Problems
نویسندگان
چکیده
We propose a BFGS primal-dual interior point method for minimizing a convex function on a convex set defined by equality and inequality constraints. The algorithm generates feasible iterates and consists in computing approximate solutions of the optimality conditions perturbed by a sequence of positive parameters μ converging to zero. We prove that it converges q-superlinearly for each fixed μ. We also show that it is globally convergent to the analytic center of the primal-dual optimal set when μ tends to 0 and strict complementarity holds.
منابع مشابه
A Feasible BFGS Interior Point Algorithm for Solving Strongly Convex Minimization Problems
We propose a BFGS primal-dual interior point method for minimizing a convex function on a convex set de ned by equality and inequality constraints. The algorithm generates feasible iterates and consists in computing approximate solutions of the optimality conditions perturbed by a sequence of positive parameters converging to zero. We prove that it converges qsuperlinearly for each xed . We als...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملGeneralization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form
We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 11 شماره
صفحات -
تاریخ انتشار 2000